Handwritten Character Recognition using Different Kernel based SVM Classifier and MLP Neural Network (A COMPARISON)

نویسندگان

  • Parveen Kumar
  • Nitin Sharma
  • Arun Rana
  • A. L. Sabourin
  • R. Suen
چکیده

Neural Networks and SVM are recently being used in various kind of pattern recognition. As humans, it is easy to recognize numbers, letters, voices, and objects, to name a few. However, making a machine solve these types of problems is a very difficult task . Character Recognition has been an active area of research in the field of image processing and pattern recognition and due to its diverse applicable environment, it continues to be a challenging research topic. It has numerous applications which include, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. In this paper an attempt is made to recognized handwritten character using the multi layer feed forward back propagation neural network without feature extraction and SVM classifier. Character data is used for training the neural network and SVM. The trained network is used for classification and recognition. For the neural network, each character is resized into 70x50 pixels, which is directly subjected to training. That is, each resized character has 3500 pixels and these pixels are taken as features for training the neural network. For the SVM classifier recognition model is divided in two phases namely, training and testing phase. In the training phase 25 features are extracted from each character and these features are used to train the SVM. In the testing phase SVM

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural Network Based Recognition System Integrating Feature Extraction and Classification for English Handwritten

Handwriting recognition has been one of the active and challenging research areas in the field of image processing and pattern recognition. It has numerous applications that includes, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. Neural Network (NN) with its inherent learning ability offers promising solutions for handwritten characte...

متن کامل

Multi-class SVM Classifier With Neural Network For Handwritten Character Recognition

The paper describes the process of character recognition using the Multi Class SVM classifier combined with a neural Network approach. The character recognition techniques or the OCRs are either a printed document recognition or the handwritten character recognition. SVM (Support Vector Machine) classifiers often have superior recognition rates in comparison to other classification methods. In ...

متن کامل

Persian Handwritten Digit Recognition Using Particle Swarm Probabilistic Neural Network

Handwritten digit recognition can be categorized as a classification problem. Probabilistic Neural Network (PNN) is one of the most effective and useful classifiers, which works based on Bayesian rule. In this paper, in order to recognize Persian (Farsi) handwritten digit recognition, a combination of intelligent clustering method and PNN has been utilized. Hoda database, which includes 80000 P...

متن کامل

Application of Support Vector Machines for Recognition of Handwritten Arabic/Persian Digits

A new method for recognition of isolated handwritten Arabic/Persian digits is presented. This method is based on Support Vector Machines (SVMs), and a new approach of feature extraction. Each digit is considered from four different views, and from each view 16 features are extracted and combined to obtain 64 features. Using these features, multiple SVM classifiers are trained to separate differ...

متن کامل

Performance Comparison of SVM and ANN for Handwritten Devnagari Character Recognition

Classification methods based on learning from examples have been widely applied to character recognition from the 1990s and have brought forth significant improvements of recognition accuracies. This class of methods includes statistical methods, artificial neural networks, support vector machines (SVM), multiple classifier combination, etc. In this paper, we discuss the characteristics of the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012